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Abstract

Background: Obesity is a complex metabolic condition in strong association with various diseases, like type 2
diabetes, resulting in major public health and economic implications. Obesity is the result of environmental and
genetic factors and their interactions, including genome-wide genetic interactions. Identification of co-expressed
and regulatory genes in RNA extracted from relevant tissues representing lean and obese individuals provides an
entry point for the identification of genes and pathways of importance to the development of obesity. The pig, an
omnivorous animal, is an excellent model for human obesity, offering the possibility to study in-depth organ-level
transcriptomic regulations of obesity, unfeasible in humans. Our aim was to reveal adipose tissue co-expression
networks, pathways and transcriptional regulations of obesity using RNA Sequencing based systems biology
approaches in a porcine model.

Methods: We selected 36 animals for RNA Sequencing from a previously created F2 pig population representing
three extreme groups based on their predicted genetic risks for obesity. We applied Weighted Gene Co-expression
Network Analysis (WGCNA) to detect clusters of highly co-expressed genes (modules). Additionally, regulator genes
were detected using Lemon-Tree algorithms.

Results: WGCNA revealed five modules which were strongly correlated with at least one obesity-related phenotype
(correlations ranging from −0.54 to 0.72, P < 0.001). Functional annotation identified pathways enlightening the
association between obesity and other diseases, like osteoporosis (osteoclast differentiation, P = 1.4E−7), and
immune-related complications (e.g. Natural killer cell mediated cytotoxity, P = 3.8E−5; B cell receptor signaling pathway,
P = 7.2E−5). Lemon-Tree identified three potential regulator genes, using confident scores, for the WGCNA module
which was associated with osteoclast differentiation: CCR1, MSR1 and SI1 (probability scores respectively 95.30, 62.28,
and 34.58). Moreover, detection of differentially connected genes identified various genes previously identified to
be associated with obesity in humans and rodents, e.g. CSF1R and MARC2.
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Conclusions: To our knowledge, this is the first study to apply systems biology approaches using porcine adipose
tissue RNA-Sequencing data in a genetically characterized porcine model for obesity. We revealed complex
networks, pathways, candidate and regulatory genes related to obesity, confirming the complexity of obesity and
its association with immune-related disorders and osteoporosis.

Keywords: Obesity, RNA sequencing, Gene co-expression networks, Regulatory genes, Systems biology,
Osteoporosis
Background
Obesity is a complex common health problem, and be-
cause of its exponential growth in prevalence in the last
decades, the World Health Organization (WHO) has rec-
ognized it as a global epidemic since 1997. Obesity is an
excess of adipose tissue, resulting from an imbalance
between energy intake and energy expenditure [1]. As
adipose tissue plays a key role in the control of energy bal-
ance by secreting e.g. hormones, cytokines and growth
factors, a disturbance in this tissue is strongly associated
with other severe diseases such as type 2 diabetes, cardio-
vascular diseases and various types of cancer [2].
In this study, we use subcutaneous adipose tissue from

a previously established porcine model [3] for studying
the genetics of obesity. The value of the pig as a model
for obesity has been investigated and proven by diverse
studies, as the pig (omnivorous like humans) shares
metabolic, digestive and cardiovascular features with
humans [4,5]. This was also obvious from a previous
study of our F2 pig population which showed a strong
genetic divergence for diverse obesity-related traits ex-
tensively phenotyped [3,6].
Obesity is highly heritable, with heritability estimates be-

tween 40 and 70 percent [7], and although many studies
have focused on finding loci involved in obesity (e.g. using
genome-wide association studies (GWAS) [8]), the genetic
risk variants identified to date explain a limited proportion
of the heritability. In addition to genetic approaches,
transcriptomic analyses have shown to be useful in study-
ing complex diseases. Transcriptomic analyses give insight
into the intermediate step between genes and its function,
providing the opportunity to better understanding the bio-
logical mechanisms [9]. Microarray technologies have
been the main platform in recent years [10] and micro-
array expression data gave the opportunity of both asses-
sing thousands of genes at the same time while providing
a better understanding of the underlying biological pro-
cesses of many complex diseases [11-13]. Expression data
are extensively used to detect differentially expressed
genes, but network approaches have also gained ground to
reveal more of the complex transcriptional regulation
by detecting sets of highly co-regulated genes. Clusters
of co-regulated genes that share a common function,
called ‘modules’, are thought to work together in a net-
work and correspond to, for example, biological path-
ways. Several network approaches are available, such as
the Weighted Gene Co-expression Network Analysis
(WGCNA) method (based on correlation patterns
between expression profiles) [14] which has proven its
superiority over Partial Correlation and Information
Theory (PCIT) methods [15], and the Lemon-Tree pro-
ject (based on probabilistic graphical models) [16]. We
have previously applied WGCNA approaches to com-
plex traits in animal populations [17,18], and the
method has also proved to be reliable in various human
diseases, e.g. different types of cancer [19,20].
A relatively novel platform for gene expression data is

RNA Sequencing (RNA-Seq), which allows us to study
the complete transcriptome in more detail and with
more precise measurements in comparison with micro-
array platforms, also facilitating the discovery of novel
genes [21]. This has already been proven by Iancu et al.
[22] who compared the WGCNA approach applied to
microarray expression data and RNA-Seq data. Their
results showed that the greater sensitivity and dynamic
range results in a better estimation of network proper-
ties, such as network density and centralization. The
huge advantage of detecting novel genes for complex
traits will also be a major opportunity in network ap-
proaches, where the biological information included in
the network helps in revealing the function of the novel
genes. To date, a limited number of studies have ana-
lyzed RNA-Seq data using the WGCNA approach to in-
vestigate complex diseases and traits, e.g. psoriasis [23],
heart failure in a mouse model [24] and alcohol use dis-
orders in a mouse model [25]. Moreover, the WGCNA
approach has also been used on RNA-Seq data of human
subcutaneous adipose tissue, revealing a cluster of genes
associated with serum triglyceride regulation [26]. Also
the Lemon-Tree algorithms, previously published as
LeMoNe, have showed their value in different biological
traits [27-29]. The combined use of high-throughput
omics data from clearly characterized groups of individ-
uals for complex diseases and mathematical models to
build gene co-expression and regulatory networks is at
the core of systems biology methods [13,17,30].
www.manaraa.com
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In the present study we applied the WGCNA method
and Lemon-Tree algorithms, using RNA-Seq data, with
the aim to elucidate transcriptomic regulations of obesity
by detecting pathways, novel and regulator genes involved
in its pathogenesis. To our knowledge, this is the first
study using systems biology and network approaches to
study the overall complex transcriptional regulation of
obesity using RNA-Seq data in a genetically characterized
porcine model.

Results and discussion
The genetic background of selected animals
We previously created and published one aggregate geno-
typic value (or predicted genetic risks) called “the Obesity
Index” (OI), representing the degree of obesity per pig
from a larger population of 279 pigs resulting from an F2
intercross between Duroc and Göttingen Minipigs [6].
The normal distribution of OI among the entire popula-
tion clearly showed the existence of large genetic variation
between animals. Based on the distribution of the OI we
categorized animals into three extreme groups, one for
obesity, one for leanness and a third group from the mid-
dle of the OI distribution. Subcutaneous adipose tissue
was collected for paired-end RNA-Seq from 12 lean (L),
12 intermediate (I) and 12 obese animals (O) totaling 36
samples. Descriptive statistics of the OI and a selection of
other obesity-related phenotypes within the three sub-
groups of pigs are presented in Table 1. Among the se-
lected animals, there is a large difference in age at
slaughter (L: 309 days, I: 234 days, O: 218 days), as they
were slaughtered at approximately 100 kg. In addition,
other obesity-related phenotypic measurements showed a
significant difference between the three groups, as shown
in Table 1.

Weighted Gene Co-expression Network Analysis (WGCNA)
We applied the WGCNA approach using the count data
resulting from RNA-Seq of 36 porcine subcutaneous adi-
pose tissue samples. The WGCNA analysis relies on the
assumption that strongly correlated expression levels of a
group of genes indicate that those genes work coopera-
tively in related pathways, contributing to the resulting
phenotype. In addition, genes may also cluster together as
Table 1 Descriptive statistics (mean and standard deviation)
obesity-related traits for the three subgroups

Gender1 OI*** Wgt*** AbdCirc

Lean 7/5 −2.47 (0.75) 80.13 (14.98) 112.09 (1

Intermediate 6/6 0.07 (0.11) 93.71 (16.87) 122.83 (7

Obese 6/6 2.4 (0.36) 113.75 (11.97) 134.25 (7
1Presented as frequency male/female.
***Highly significant, P-value < 0.001.
**Significant, P-value < 0.01.
Wgt: weight at appr 7 months of age, AbdCirc: abdominal circumference at approx
weight of leaf fat at slaughter, SL%meat: percentage of meat content at slaughter.
a result of a common set of transcription factors. The co-
expression network was constructed using 3,532 selected
genes and clusters of highly co-expressed genes (modules)
were detected and assigned to module colors (Figure 1).
In total, we identified 20 modules, labeled by colors, with
each containing at least 50 genes.
For each module an eigengene was calculated that ex-

plained between 33 and 72 percent of the expression
variation. The Module-Trait Relationships (MTRs) with
all selected obesity and obesity-related (OOR) traits were
calculated by correlating the module’s eigengene to the
traits of interest (Figure 2) and used for selection of
modules for downstream analysis. The matrix represent-
ing all MTRs shows that several modules are highly cor-
related with one or more OOR trait, and it also shows a
clear distinction in the MTR of modules between the
different OOR traits. Modules were selected when they
had a MTR > 0.5 with at least one OOR trait and genes
in the modules were retained in the module based on
their intra-modular connectivity. On the basis of those
selection criteria we selected five modules for functional
annotation: the Blue Module (275 genes), the Brown
Module (62 genes), the Lightyellow Module (21 genes),
the Black Module (105 genes) and the Greenyellow
Module (41 genes). All genes present in those modules
are presented in Additional file 1.

Functional enrichment of modules
After correcting for potential gene length bias (see
Methods), as longer and highly expressed genes have a
greater chance of being detected [31], we identified over-
represented Gene Ontology (GO) terms and KEGG
pathways in the selected modules using GOSeq. P-values
were adjusted using the Benjamini-Hochberg (BH) cor-
rection. The most significant GO terms and KEGG path-
ways are presented in Table 2.
The Blue module (eigengene), having the highest correl-

ation with the OI (MTROI = 0.53), showed an overrepre-
sentation of immune-related GO terms and KEGG
pathways. As the Blue module is a rather large module,
we looked into some intra-modular characteristics: the
intra-modular connectivity and the Gene-Trait correla-
tions with the OI (Figure 3A). This plot evidently showed
www.manaraa.com

and test of difference of means for a selection of

*** ADG*** DXAfat** SLfat** SL%meat**

2.02) 0.29 (0.03) 1833.35 (660.30) 1.70 (1.37) 48.12 (6.88)

.85) 0.45 (0.04) 2031.00 (512.69) 2.68 (0.87) 43.29 (3.70)

.58) 0.59 (0.05) 3050.22 (907.17) 3.26 (1.17) 41.4 (7.44)

imately 7 months of age, ADG: average daily gain from birth to slaughter, SLfat:


Figure 1 Gene dendrogram showing the co-expression modules defined by the WGCNA labeled by colors.
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that genes with a high module membership were also
highly correlated with OI, motivating us to reduce the
module based on the module membership. Here we in-
creased the Module Membership threshold to 0.9, result-
ing in 69 genes. The expression profile of the eigengene of
Figure 2 Matrix with the Module-Trait Relationships (MTRs) and corre
and selected obesity and obesity-related traits on the x-axis. The MTR
correlation, while blue is a strong negative correlation. Explanation of the t
length2), and BAI (Body Adiposity Index: abdominal circumference/length1.5

was performed at approximately 2 months of age. Fasting glucose levels w
7 months of age. Animals were slaughtered at approximately 100 kg (~7 m
2013 [3].
the Blue module showed a clear under-expression for the
lean animals, while it showed overexpression in the obese
individuals (Figure 3B).
These expression profiles are as expected, as various

studies have shown that an increase of adipose tissue is
www.manaraa.com

sponding p-values between the detected modules on the y-axis
s are colored based on their correlation: red is a strong positive
raits: Weight, Abdominal Circumference, BMI (Body Mass Index: weight/
) were measured at approximately 7 months of age. DXA scanning
ere determined using an oral glucose tolerance test at approximately
onths). More detailed information can be found in Kogelman et al.,


Table 2 Overview of the most significantly overrepresented KEGG pathways and GO terms associated with the
modules detected using WGCNA

WGCNA module KEGG pathway or GO-term Frequency in module Number of genes in term Padj

Blue KEGG: Osteoclast differentiation 12 52 1.40E-07

KEGG: Natural Killer cel mediated cytotoxity 8 34 3.76E-05

KEGG: B cell receptor signaling pathway 7 29 7.24E-05

GO: Immune system response 39 516 5.57E-11

GO: Cell activation 26 217 2.53E-10

GO: Regulation of immune system response 28 82 1.22E-09

Black GO: Extracellular region 40 382 5.53E-06

GO: Extracellular matrix 21 121 3.61E-05

GO: Proteinaceous extracellular matrix 19 97 3.61E-05

Lightyellow GO: Nucleolus 8 124 1.30E-02

GO: Ribosome biogenesis 4 18 3.40E-02

GO: Nuclear par 12 437 3.40E-02
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correlated with an increase of several types of immune
cells, particularly with macrophages [32,33] which are key
players in the initiation of a chronic inflammatory state in
obesity [34]. As expected for the 69 genes, the significant
GO terms and KEGG pathways were still nearly all immune
related, except that the most significant KEGG pathway was
osteoclast differentiation (Padj = 1.4E−7) (Figure 3C & 3D).
Osteoclasts are derived from macrophages, one of the most
up-regulated immune cells in adipose tissue of obese indi-
viduals, and are therefore also closely linked to many
Figure 3 WGCNA module (Blue) associated with immunity. A) Associat
within the blue module. B) Module eigengene values (y-axis) across sample
animals colored yellow and the 12 obese animals colored red. C) Pie chart
significant Gene Ontology terms in the Blue module.
immune diseases [35]. Bone marrow houses two kinds of
stem cells: the mesenchymal stromal cells which are pre-
cursors for osteoblasts and adipocytes and the hematologic
stem cells originating from osteoclasts. Moreover, there is
an important communication between adipose tissue and
skeleton where factors secreted by adipocytes affect bone
remodeling, i.e. leptin, adiponectin, pro-inflammatory cyto-
kines as Interleukin 6 (IL-6) [36,37]. IL-6 is known to be an
important regulator of the immune and hematopoietic sys-
tems and it has been associated with osteoporosis disease
www.manaraa.com
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of all significant KEGG pathways in the blue module. D) The top 10
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and rheumatoid arthritis [38,39]. Osteoporosis is a poly-
genic trait [40], whereby increased bone fragility results
from increased adipocytes and osteoclastogenesis and insuf-
ficient osteoblastogenesis [41]. When looking at the func-
tions of the different genes present in the Blue module, we
find many genes which have a clear function in the immune
system and also have been associated with osteoclast differ-
entiation, e.g. BCL2A1, DOK2, PTPN6 and several genes
encoding cell surface molecules (e.g. CD45 and CD68). An-
other gene in this module is SPI1. SPI1 is encoding the
transcription factor PU.1 protein which activates gene ex-
pression during myeloid and B-lymphoid cell development.
A study of Wang et al. [42] has shown that PU.1 is
expressed in white adipose tissue and plays a role in adipo-
genesis. Moreover, variations in SPI1 play a role in osteo-
clastogenesis as for example, PU.1 deficient mice develop
osteoporosis [43], and it increases the risk of fracture by its
effect on ALOX15 [44].
Other highly significant associated pathways in this

module are all immune-related, of which the most
significant is Natural killer cell mediated cytotoxity
(P-value = 3.8E−5). In fact, obesity causes morphological
changes in adipose tissue, resulting in a state of chronic
low-grade inflammation [45]. Furthermore, natural killer
(NK) cells are critical in the innate immune response,
less examined in association with obesity, but it has been
shown that diet-induced obese mice show a reduced NK
cytotoxity after infection [46]. Another study showed an
increased level of NK cells in healthy obese compared
with unhealthy obese individuals, suggesting its import-
ance in metabolic processes [47]. Several studies have
shown and investigated the link between the immune
system and metabolism [48,49], also in combination with
obesity [50,51]. This also explains the significant associ-
ation of the other KEGG pathways and GO terms in this
module.
The Black module (MTROI = 0.35) shows a strong re-

verse correlation (−0.42) with fasting glucose levels (FGL).
The KEGG pathways are not significant after BH correc-
tion, but before BH correction the most significant path-
way is ECM-receptor interaction (P = 0.001). Several GO
terms related to this extracellular matrix (ECM) are found
to be significantly overrepresented, also after BH correc-
tion, e.g., extracellular region (Padj = 5.5E−6), extracellular
matrix (Padj = 3.6E−5) and proteinaceous extracellular
matrix (Padj = 3.6E−5). As we are interested in the genes
which are involved in the pathways representing the high
positive correlation with fatness, but with a high negative
correlation with glucose levels, we examined the associ-
ation of the genes between the two traits. We selected leaf
fat at slaughter (SLfat) and FGL as traits of interest because
of their high correlations. The correlations of the expres-
sion profiles with these traits show that there is a wide
variation in their correlations with both traits, and that
there is a weak negative correlation (−0.23) between the
Gene-Trait correlations of SLfat and FGL. Next, we only se-
lected genes having a correlation >0.4 with both SLfat and
FGL, resulting in a selection of 36 genes, of which 24 were
assigned a gene name, for further functional annotation. Of
these genes we will only comment on the most relevant in
relation to obesity. ADAMTS-12 is a metalloprotease neces-
sary for normal immunological response [52]. The PFPK
gene (phosphofructokinase, platelet) is a key regulatory en-
zyme in glycolysis. In the first GWAS presented on obesity,
this gene was found to be associated, but did not get vali-
dated in the replication stage [53]. However, differential
gene expression in the visceral adipose tissue shows differ-
ential expression of the PFPK gene in obese vs. lean individ-
uals [54]. Two of the genes in the modules are proprotein
convertase subtilisin/kexins (PCSK): the PCSK5 and PCSK6
gene. Several studies have shown their relevance in
metabolic-associated processes, for example high-density
lipoprotein (HDL) metabolism [55,56]. The BDKRB2 (BK
type 2 receptor) gene has been suggested to be acting as a
genetic modulator of glucose homeostasis, potentially in-
creasing susceptibility to diseases like diabetes [57]. The
Probable G-protein coupled receptor 133 (encoded by the
GPR133 gene) has been associated using GWAS to body
weight control in mice [58] and height control in human
[59]. The MFAP5 gene is also present in the Black module,
encoding the microfibrillar-associated protein 5. This is an
extracellular matrix glycoprotein, shown to be expressed in
adipose tissue, and its expression is positively correlated
with BMI, and change in body fat mass [60]. Moreover,
Vaittinen et al. [60] also found correlations between
MAFP5 expression and insulin resistance markers.
The third investigated module is the Lightyellow

Module (MTROI = −0.22), showing a high MTR with
omental fat at slaughter (−0.54). This module does not
show any significant KEGG pathways after BH correc-
tion, but several significant overrepresented GO terms
related to transcription were detected, e.g. nucleolus
(Padj = 0.013), ribosome biogenesis (Padj = 0.034), nuclear
part (Padj = 0.034), DNA-dependent transcription, elong-
ation (Padj = 0.038). All these processes are involved in
gene expression, which is altered under obesity. The
most highly interconnected genes in this module are
AMD1, NOL9, EIF4A1, POLR1C and ABCE1. AMD1,
the hub-gene in this module, plays a key role in poly-
amine biosynthesis. Polyamines have shown to affect
growth and development of adipose tissue, and in-
creased levels of polyamines have been associated with
childhood obesity [61]. Moreover, in an Indian child-
hood cohort AMD1 has been associated with obesity
and plasma leptin levels, speculating that AMD1 influ-
ences the susceptibility to obesity by modulating the
polyamine metabolism or DNA methylation [62]. NOL9
plays a role in ribosomal RNA (rRNA) processing [63]
www.manaraa.com


Figure 4 Plot of the differentially co-expressed genes with on the
y-axis the t-test statistic (lean vs. obese) and on the x-axis the
differential connectivity. Genes are colored grey when they are
differentially connected and colored red if they are also being
differentially expressed. In total, 29 genes (19 of which were assigned a
gene name) were colored red, which were selected for functional
annotation. Discontinuous lines represent thresholds for gene selection:
absolute t-test statistic > 1.96 and absolute differential connectivity > 0.6.
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which takes place in the nucleolus. It has previously
been shown that the EIF4A1 gene plays a role in the
protein synthesis pathway which was altered in insulin-
resistant obese individuals [64]. Furthermore, EIF4A1
was negatively correlated with the insulin receptor gene
(InsR). POLR1C is important in RNA polymerization,
which is necessary for transcription. ABCE1 is involved
in viral assembly by inhibiting the action of RNase L, a
regulator of innate immunity. It has been shown that
RNase L plays an important role in adipogenesis regula-
tion [65] and is able to restore insulin response in
muscle cells of obese individuals, suggesting a role for
RNase L in “healthy obese” subjects [65]. This finding is
in agreement with a study of Mahdi et al. [66] that
showed a correlation between the expression levels of
ABCE1 and insulin secretion, following the same
WGCNA approach as this study.
Neither the Greenyellow module (MTROI = 0.45) nor

the Brown module (MTROI = 0.47) showed any signifi-
cant KEGG pathways or GO terms after BH correction.

Differential network analysis
Previous studies have shown the potential of studying the
co-expression patterns of sub-networks, thereby comparing
two different states of the phenotype of interest [67]. There-
fore, we created and compared the lean sub-network and
obese sub-network using the expression data of the 12 low
OI animals and the 12 high OI animals. For both sub-
networks the gene dendrogram was created and modules
were subsequently defined to colors (results not shown).
Both sub-networks revealed clearly different modules; how-
ever, the obese modules were not preserved in the lean
sub-network, and vice versa. Biologically, this shows differ-
ent active pathways in the lean versus obese animals, as
expected.
To indicate which genes are acting differently in the sub-

networks and consequently potentially being involved in
the obese phenotype, we indicated which genes were differ-
entially co-expressed. Modules are constituted of a group
of highly interconnected genes, and as a consequence of
scale-free topology assumptions, it will consist of many low
interconnected genes and a few highly interconnected
genes (hub genes). Those hub genes are believed to be bio-
logically important, as they represent tightly regulated pro-
cesses. We expect that hub genes that behave differently in
a certain condition will have a key role in that particular
condition. The differential connectivity (k_diff) represents
the change in connectivity between the lean and obese sub-
networks. In total, we detected 185 differentially connected
genes (absolute differential connectivity > 0.6). To assign
these genes to biologically relevant genes, they were further
selected based on their difference in expression levels
between the lean and obese condition (absolute T-test stat-
istic > 1.96). This resulted in the detection of 29 genes,
19 of which were assigned a gene name (Figure 4) and 12
of which were also present in one of the selected modules.
We found eight genes (IFI35, SNX19, MARC2, MORN2,

PLA2G16, CCL5, CACNA2D1, and REV1) that were hub
genes in the obese sub-network, but lowly interconnected
in the lean sub-network. All except IFI35 and REV1 are
up-regulated in the obese animals. Many of the obese
hub-genes are, as expected, active in obesity-related path-
ways, where we can see a subdivision in fatness related
pathways and immune-related pathways. Both IFI35 and
CCL5 are immune-related genes. IFI35 (interferon-in-
duced protein 35) is a cytokine important for communica-
tion between cells in the innate immune response. A
recent study showed that IFI35 negatively regulates the
RIG-I antiviral signaling [68], which in turn activates the
innate immune response. These patterns are in concord-
ance with the down-regulation of IFI35 in our obese pigs,
as it has been accepted that the native immune response
is triggered in obese individuals [69]. CCL5 (chemokine
(C-C motif) ligand 5) is secreted by bone marrow stromal
cells and encodes a protein which is also known as
RANTES (regulated on activation, normal T cell expressed
and secreted). It plays a key role in recruiting leukocytes
during immune response and plays a role in inducing the
activation of Natural Killer cells [70]. It may also play a
role in the inflammation of obese human white adipose
tissue [71], as it shows up-regulation in obese subjects
[72]. SNX19 (sortin nexin 19) encodes a membrane-
associated protein complex which is associated with cor-
onary heart disease and myocardial infarction. It can also
interact with IA-2 which is a major auto-antigen in type 1
diabetes and a regulator of insulin secretion [73]. Several
www.manaraa.com
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of the obese hub-genes are also related to fat and body
weight. The first one is MARC2 (Mitochondrial Amidox-
ime Reducing Component 2), which has been associated
with decreased total body fat and increased circulating
glucose levels in mice [74]. The PLA2G16 (adipocyte
phospholipase A2 (AdPLA) gene, also present in the
Greenyellow module, encodes an enzyme that is mainly
found in adipose tissue and catalyzes the release of fatty
acids from phospholipids in adipose tissue [75]. Genetic
variants of this gene have been associated with neutral
lipid storage disease [76] and growth traits in cattle [77].
AdPLA-deficient ob/ob mice show an increased lipolysis,
a reduced adipose tissue mass and triglyceride content,
but show a normal adipogenesis, showing its role in the
control of adipocyte lipolysis and thereby its important
role in the development of obesity [78]. The CACNA2D1
gene (Voltage-dependent calcium channel subunit alpha-
2/delta-1) encodes a protein in the voltage-dependent cal-
cium channel complex. In a meta-analysis on body fat in
mice it was shown to be associated with body fat percent-
age [79] and has been associated with carcass and meat
quality traits in cattle [80,81]. The exact function of the
MORN2 gene is unknown; this gene was also present in
the Greenyellow module. The last obese hub-gene is
REV1, which encodes a DNA repair protein. The fact that
this gene is down-regulated in obese animals may be ex-
plained by the fact that the DNA repair process is per-
turbed under obesity. It has been seen, for example, that
mutations in genes encoding for DNA repair proteins are
associated with developmental inhibition, immunodefi-
ciency and increased risk of cancer in humans [82].
In addition, we found 11 genes (CSF1R, EVI2B, SAM

HD1, PCD1A, CD68, FAM105A, P2Y12R, NCEH1, SPI1,
FRMPD4 and PigE-108A11.6) which were hub-genes in the
lean network but weakly interconnected in the obese sub-
network. All these genes are up-regulated in the obese ani-
mals. All of them, except FRMPD4, were also found in one
of the WGCNA modules. Except for the SAMHD1gene,
they were all found in the Blue module; SAMDHD1 was
present in the Black module. Several of the 11 genes are
immune-related, e.g. CSF1R, SAMHD1, PCD1A, CD68,
SPI1 and PigE-108A11.6. CSF1R (Colony stimulating factor
1 receptor) controls the production, differentiation and
function of macrophages [83] and its expression has been
correlated with body fat percentage in humans [84].
SAMHD1 (SAM domain and HD domain-containing pro-
tein 1) is an enzyme exhibiting phosphohydrolase activity,
converting nucleotide triphosphates to a nucleoside and tri-
phosphate. PCD1A is the porcine cd1 antigen involved in
the presentation of lipid antigens to T cells, but its precise
function is unknown. CD68 encodes a glycoprotein that
binds to low-density lipoprotein, expressed on monocytes/
macrophages. Its expression was significantly up-regulated
in acquired obesity in monozygotic twin pairs and correlated
to liver fat and insulin resistance [85]. SPI1 has been
found in the Blue module in WGCNA, and its relation
with adipogenesis and ostoclastogenesis has been dis-
cussed. PigE-108A11.6 is the orthologous of LILRB5
(leukocyte immunoglobulin-like receptor subfamily B
member 5), which is expressed in immune cells where
they bind to MHC class 1 molecules on antigen-
presenting cells and inhibit stimulation of an immune
response. It has been found to be up-regulated in omen-
tal adipose tissue in obese individuals [86]. Also various
other genes were detected among the hub-genes in the
lean animals. The P2Y12R gene encodes a protein which
is an important regulator in blood clotting and conse-
quently associated with heart attacks [87]. Moreover, in-
sulin inhibits blood platelet aggregation by suppressing
the P2Y12 pathway, and therefore type 2 diabetes leads
to up-regulation of the P2Y12 pathway, resulting in in-
creased platelet reactivity [88]. The NCEH1 (Neutral
cholesterol ester hydrolase 1) gene encodes an enzyme
which is located in the endoplasmic reticulum which
plays a role in the regulation of the levels of platelet ac-
tivating factor and lysophospholipids. NCEH1 has a key
role in the reverse cholesterol transport in macro-
phages, thereby playing a critical role in human athero-
sclerosis [89].

Detection of regulator genes
Several of the detected modules showed an overrepresenta-
tion of obesity-related KEGG pathways or GO terms, but
the WGCNA approach did not reveal potential gene regu-
lators of detected modules, as WGCNA is an undirected
network. The challenge of finding potential regulators of
significant gene modules related to obesity was addressed
by using Lemon-Tree algorithms (available at https://code.
google.com/p/lemon-tree/). Lemon-Tree created a set of
potential regulators consisting of transcription factors and
signal transducers using the GO categories ‘transcription
factor activity’ and ‘signal transducer activity. Those poten-
tial regulators were then assigned to nodes with corre-
sponding probabilistic scores for being a “regulator”. Genes
will have a high probabilistic score in case there is a differ-
ential expression pattern on each side of the particular tree
node. After generation of multiple statistically equal parti-
tions of conditions for each cluster of genes, the algorithm
uses an ensemble approach to sum the strength with which
a regulator participates in each regulatory tree. The overall
statistical confidence was calculated and used for prioritiz-
ing regulators, represented by the global probabilistic score
(Prob. score). Mathematical details of the Lemon-Tree algo-
rithms can be found in Joshi et al. [16]. In this way, we built
a regulatory module network using the RNA-Seq expres-
sion data and assigned high-scoring regulator genes to the
detected clusters of co-expressed genes. We detected in
total 43 tight clusters of no less than 10 genes, which
www.manaraa.com
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resulted in a total of 1417 genes in the clusters. A pre-
defined group of genes was tested to see whether they may
regulate the expression levels of the genes in a particular
module, represented by the global probabilistic score (Prob.
Score). We tested the significance of the assigned regulators
using a t-test, showing that the assigned regulators are
significantly different from randomly assigned regulators
(P-value = 0.000).
As the Blue module resulting from the WGCNA

showed a strong association between obesity, immunity
and osteoporosis, we investigated the regulator genes of
this module. As expected, many of the genes in the Blue
module were present in one cluster (cluster1) using
Lemon-Tree algorithms. Secondly, we assigned the regula-
tors to the clusters using transcription factors and signal
transducers as potential regulators. Associations between
these potential regulator genes and detected clusters were
calculated, and the top 1% of the regulators were selected
as high-scoring candidate regulators (40 regulator genes).
Figure 5 Color coded expression values of two clusters resulting from
upper panel represents the high-scoring regulator genes, ordered by their
genes present in the cluster. Each column represents a sample. The expres
representing low expression, while bright yellow indicates highly expressed
assign the regulator gene. The vertical pink colored line represents the par
Three of these regulators were high-scoring regulators in
cluster1, and their expression levels were positively corre-
lated with the expression levels of the genes in the cluster:
CCR1 (Prob. score = 95.30), MSR1 (Prob. score = 62.28)
and SPI1 (Prob. Score = 34.58) (Figure 5A). Both CCR1 and
SPI1 were also present in the Blue module, where SPI1 had
already shown its relevance to osteoclast differentiation.
Statistical scores show that CCR1 is detected as regulator
gene (highest global probability score), encoding the C-C
chemokine receptor type 1 protein, which is interacting
with the previously mentioned CCL5 (RANTES). It has
been mentioned that chemokines play an important role
in cell-signaling during immune response. In addition, it
has been shown before that CCR1 is functionally active
in human adipose tissue derived stromal cells [90] and
plays a role in bone remodeling. Ccr1-deficient mice
show a decreased bone mineral density, reduced num-
ber of osteoblasts and osteoclast, resulting in an im-
paired bone formation [91]. Also macrophage scavenger
www.manaraa.com
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receptors, encoded by MSR1 (also called SR-A), have
been associated with osteoclast differentiation, as for ex-
ample SR-A deficient mice show an impaired differenti-
ation of osteoclasts. It was thus concluded that SR-A
promotes osteoclastogenesis by increasing expression
levels of receptor activator of NF-κB (RANK) and re-
lated molecules [92]. Again, those results show that
there is a link between obesity, the immune system and
bone remodeling (osteoporosis) [93,94], and point to a
regulatory role in these processes for CCR1, MSR1 and
SPI1.
We also examined the genes present in the Black mod-

ule in the Lemon-Tree results. Many of the genes in the
Black module clustered together in cluster10. The
Lemon-Tree algorithms point to ACKR2 as regulator
gene (Figure 5B), again encoding a chemokine receptor,
but in this case its exact function is not known.

Conclusions
Examining the obesity-related measurements of the 36
RNA-sequenced animals (divided among three genetic-
ally extreme groups) showed that there are clear differ-
ences between the three groups. Further investigation of
their expression profiles using systems biology and net-
work approaches revealed pathways that potentially play
a key role in the development of obesity and obesity-
related diseases (e.g. inflammation and osteoporosis).
Specifically, our network approach WGCNA revealed
several clusters of highly interconnected genes of which
some were associated to immune-related pathways,
which have previously been implicated in the pathogen-
esis of obesity. A subset of these pathways was also re-
lated to osteoclast differentiation (Padj = 1.4E−7), which
has been associated with the immune system and osteo-
porosis. The co-expression of immune-related genes and
their association with osteoclast differentiation shows
the close association between obesity, the immune sys-
tem and bone remodeling diseases like osteoporosis –
these results have important implications for obese hu-
man patients. Furthermore, Lemon-Tree algorithms de-
tected three regulator genes: CCR1, MSR1 and SPI1.
Those were previously associated with the immune sys-
tem and/or osteoclast differentiation, but here we show
that those genes may have a key role in the link between
obesity and osteoporosis. Another module contained
genes previously associated with lipid metabolism and
glucose metabolism, which reveals the known close asso-
ciation between obesity and other metabolic diseases like
type 2 diabetes. Differential network analysis revealed
several genes which showed a different level of activity
in the pathways they represented. Many of those genes
were previously associated with obesity or the immune
system, but not detected using single-gene association
studies. This stresses the potential of using systems
biology or network biology approaches on complex dis-
eases in order to detect genes which may be important
in disease development, and consequently could be po-
tential drug markers.
In conclusion, this study shows the advantage of using

systems or network biology approaches in complex dis-
eases to unravel their genetic architecture and transcrip-
tional regulation. We revealed several new pathways and,
more importantly, key regulator genes present in those
pathways which give a better understanding of the com-
plex transcriptional regulation of obesity. Furthermore, we
have confirmed, using our genetically characterized om-
nivorous porcine model, the known association of obesity
with other bone-related and immunity-related diseases at
the transcriptomic level, and revealed several genes ac-
tively present in those associations.

Methods
The F2 pig population and subcutaneous adipose
tissue samples
The samples used in this study were derived from a pig re-
source population established with the purpose of identi-
fying the molecular background for obesity and obesity
related traits. For a detailed description of the population
and the phenotypes see (Kogelman et al.) [3]. In this study
we have only used the Duroc *Göttingen Minipig inter-
cross that comprise a total of 279 animals generated by
intercrossing Göttingen minipig boars (Ellegaard A/S) and
Duroc sows (DanBred breeding herd). The Göttingen
minipig breed is characterized for their small size, and its
genetic predisposition for obesity, and for sharing several
metabolic impairments seen in humans [95]. The Duroc
pig is a production breed, intensively selected for leanness
and growth during the last 60 years. This population has
been extensively phenotyped for OOR traits, e.g. weight,
conformation, dual energy x-ray absorptiometry (DXA)
scanning and slaughter measurements. The F2 pigs were
produced at the research farm, University of Copenhagen
Tåstrup, Denmark. Animal care and maintenance have
been conducted according to the Danish “Animal Main-
tenance Act” (Act 432 dated 09/06/2004) and biological
samples were collected according to the Danish “Veterin-
ary Procedures Act” (Act 433 dated 09/06/2004). After
slaughtering, a biobank of tissues was created by sampling
several tissues for each animal, including subcutaneous
adipose tissue. Following, we created one aggregate pre-
dicted genetic value based on the selection index theory
[96] to represent the degree of obesity in each animal: the
Obesity Index (OI) [6]. The OI followed a normal distri-
bution, and based on this distribution animals were
categorized in two extreme groups: obese and lean. A
third group was categorized as being around the mean of
the distribution. We selected 36 animals from those three
groups for RNA-sequencing of subcutaneous adipose tissue:
www.manaraa.com
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12 low OI (lean), 12 intermediate OI, and 12 high OI
(obese). For animal selection, the family structure and the
genders of the animals was taken into account, by maximiz-
ing the number of directly related animals (full sibs) to three
per group and taking care of equal gender distribution
within the groups.

Phenotypic characterization of the selected animals
The phenotypic measurements of the animals were investi-
gated to compare the phenotypic distributions between the
three selected groups. Data that were not normally distrib-
uted was transformed to approach normality. Differences in
means were tested using an analysis of variance model
using the R statistical package [97]. All phenotypic mea-
surements were corrected for gender, and in case of a sig-
nificant effect corrected for batch and age effect, as
described before in Kogelman et al. [3]. Results were noted
as highly significant with a P-value below 0.001, significant
with a P-value below 0.01 and tend to be significant with a
P-value below 0.05.

RNA isolation and RNA-Sequencing
Total RNA was isolated from porcine subcutaneous adipose
tissue using the RNeasy lipid Mini kit (Qiagen, Germany)
following manufacturer’s recommendations. Briefly, 100 mg
of tissue were homogenized in Qiazol buffer using the gen-
tleMACS™ Octo Dissociator system (Milteny Biotec, GmbH,
Germany) with M tubes (Milteny Biotec, GmbH, Germany)
and the RNA_02 program recommended by the manufac-
turer. The RNA was DNase treated in order to degrade the
remaining genomic DNA. At the end of the protocol the
RNA was eluated in 30 μl of RNAse free water. Quantity
and quality were assessed by Nanodrop ND-1000 spectro-
photometer. Furthermore integrity of the isolated RNA was
inspected by electrophoresis in a 1.4% agarose gel and by
measuring the RQI value on an Experion™ system (BioRad)
using Eukaryote Total RNA StdSens kit (BioRad). The RQI
average for all the 36 extracted samples was 8.56.
For the RNA-seq, libraries were constructed using

400 ng of total RNA and TruSeq RNA Sample Prep
(Illumina) with Poly-A pull down rRNA depletion fol-
lowing manufacturer’s recommendations. Samples were
sequenced on the HiSeq2500 platform, dividing the 36
samples over 4 lanes, using a read length of 100 bp
paired-end reads [98]. Before alignment, reads with a
low quality and adapters were detected using FastQC
and removed. Remaining reads were mapped to the
SScrofa10.2.72 genome using default parameters in
STAR aligner. This resulted in an average of 30,557,234
uniquely mapped reads per sample, of which on average
81.60 percent was mapped in the intragenic region
(within introns or exons). On average 20,390 transcripts
were detected among the mapped reads. Read counts
were estimated at gene-level using HTSeq [99].
RNA-Sequencing data normalization and gene selection
Previous studies have been shown that genes with extreme
low expression levels are less reliable [100]. Therefore,
genes with expression levels equal or lower than 5 were
removed from the dataset, resulting in 12,253 genes per
sample. The between-sample bias was removed by esti-
mating the library size factor using the estimateSizeFactor
() function in DESeq [101]. Normalization was then per-
formed using the voom() variance-stabilization function in
the R-package Limma [102], whereby samples were cor-
rected for gender.

Weighted Gene Co-expression Network Analysis
Because of computational limitations the dataset had to
be further reduced for network construction. As it is be-
lieved that non-changing genes provide limited informa-
tion in a co-expression network setting, genes were
selected based on their variation (SD > 0.25), resulting in
8,745 genes. Furthermore, based on the connectivity
(sum of connection strengths with all other genes) genes
were selected for the lean, intermediate and obese sub
dataset, as genes with a high connectivity (hub genes)
are thought to be more biologically important [103]. The
1500 highest connected genes in each of the lean, inter-
mediate and obese sub-dataset resulted in a joint dataset
of 3532 unique genes. Consequently, we built an un-
signed co-expression network using the WGCNA R-
package [104], using 3532 genes. The adjacency matrix
was created by calculating the Pearson’s correlations be-
tween all genes, and raised to a power β of 7. The power
β was chosen based on the scale-free topology criterion
[105], resulting in a scale-free topology index (R2) of
0.92. Next, the Topological Overlap Measure (TOM),
representing the overlap in shared neighbors, was calcu-
lated using the adjacency matrix. The dissimilarity TOM
was used as input for the dendrogram, and modules
(clusters of highly interconnected genes) were detected
as branches of the dendrogram using the DynamicTree-
Cut algorithm [106]. All modules were assigned to a
color. The module eigengene was used to represent each
module, which was calculated by the first principal com-
ponent, thereby capturing the maximal amount of vari-
ation of the module. Using the module eigengene, the
Module-Trait relationships were estimated by calculating
the Pearson’s correlations between the module eigengene
and the traits of interest. Those Module-Trait relation-
ships were used to select potential biologically interest-
ing modules for downstream analysis. Modules were
selected when they had a correlation >0.5 with at least
one of the selected traits. Genes in the module were se-
lected when their intra-modular connectivity with that
particular module was >0.6, the intra-modular connect-
ivity with all other modules <0.6. The intra-modular
connectivity is calculated as the correlation between the
www.manaraa.com
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gene’s expression profile and the expression profile of
the module eigengene. Another gene characteristic is the
Gene Trait correlation: the correlation between the
gene’s expression profile and the phenotype of interest.

Functional annotation
After selection of modules and genes retained in those
modules, we investigated those modules using several
different module characteristics. An important intra-
modular analysis was detection of the correlation
between the Module Membership and the Gene-Trait
relationships. The Module Membership is based on
measuring the intra-modular connectivity: the correl-
ation of a particular gene in the module with the mod-
ule eigengene. The Gene-Trait relationship is the
correlation between the expression profiles of a particu-
lar gene with the phenotype of interest. We selected a
subset of the modules based on functional annotation.
Using BioMart [107] the associated gene names were
detected. Gene length bias has been shown to be an im-
portant bias in RNA-Seq, as longer genes will be se-
quenced deeper than shorter genes [31]. Therefore, we
used GOSeq [108] to detect overrepresented gene ontol-
ogy (GO) terms and KEGG pathways, which is able to
Figure 6 Workflow of the RNA-Seq data analysis.
correct for gene length bias. The Probability Weighting
Fuction (PWF) is obtained depending on the gene
length, which is used in the Wallenius approximation to
calculate overexpressed GO terms and KEGG pathways
among the selected modules. To correct for the multiple
testing problem, the p-values are adjusted using the
Benjamini-Hochberg (BH) correction. GO terms and
KEGG pathways were thought to be significant when
the adjusted p-value was below 0.05.

Differential connectivity
The differential connectivity is a measure of the differ-
ences in gene interactions between the lean and obese
animals, potentially identifying genes which underlie a
difference in transcriptional regulation [67]. Therefore,
two sub-networks were created: one with only the 12
lean animals (lean sub-network) and one with only the
12 obese animals (obese sub-network). For network
construction, we used the 12,253 genes which passed
the quality control measures as described above. Again,
we selected the most varying genes by using the vari-
ance threshold of S.D. > 0.25, resulting in 8,745 genes
for network construction. The adjacency matrix was
constructed in both sub-networks, and was created by
www.manaraa.com
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calculating the Pearson’s correlations and raising them
to the power β = 9, based on the scale-free topology as-
sumption. The connectivity of each gene was calculated
in both the lean and obese sub-network, as the sum of
connection strengths of a particular gene with all other
genes.
The differential connectivity (k_diff) was calculated by

subtracting the connectivity of the genes in the lean sub-
network from the connectivity in the obese sub-network.
This resulted in a normal distribution of values between −1
and 1. When the k_diff was positive, it meant that the genes
were highly connected in the obese sub-network than in
the lean sub-network, while a negative k_diff meant that
the genes were highly connected in the lean sub-network
than in the obese sub-network. Furthermore, we performed
a standard t-test, comparing the gene expression of the
obese vs. the lean animals, to assign the difference in ex-
pression between the two sub-networks. Genes were la-
beled as differential connected when the absolute k_diff
was above 0.6, resulting in the detection of genes which
were hubgenes in one sub-network, but not in the other
sub-network. Differentially connected genes were selected
for functional annotation when their absolute t-test statistic
was above 1.96 indicating that the genes are differentially
expressed between the obese and lean animals. Associated
genes were detected again using BioMart [107].

Detection of regulator genes
To detect regulator genes of the modules, we used the
Lemon-Tree software suite, available at https://code.goo-
gle.com/p/lemon-tree/. Lemon-Tree is able to detect
regulatory modules from gene expression data using
probabilistic graphical models [109]. We used the voom
() normalized expression data of the 12,253 genes which
passed QC, and further reduced the dataset by selecting
genes with a standard deviation above 0.5. Afterwards,
the 3,101 resulting genes were centered and scaled,
resulting in a mean of 0 and standard deviation of 1.
Using Lemon-Tree, expression data is clustered based
on the Gibbs sampler method [110]. To identify reliable
clusters the clustering algorithm was run 10 times, and
afterwards clusters are integrated to generate a single ro-
bust clustering solution (tight clustering). Samples were
grouped (hierarchical tree) based on a similar mean and
standard deviation. To identify candidate regulator genes
we created a set of potential regulators consisting of
transcription factors and signal transducers, using the
GO categories ‘transcription factor activity’ and ‘signal
transducer activity, resulting in 1104 genes. Those po-
tential regulators were assigned to nodes in the hierarch-
ical tree by logistic regression, and probabilistic scores
were assigned to those regulators. This results in a high
probabilistic score in case there is a different expression
pattern on each side of the particular tree node. After
generation of multiple statistically equal partitions of
conditions for each cluster of genes, it uses an ensemble
approach to sum the strength with which a regulator
participates in each regulatory tree. The overall statistical
confidence is calculated and used for prioritizing regula-
tors, represented by the global probabilistic score (Prob.
score). We calculated the significance of those probabil-
istic scores by comparing the assigned regulators with
randomly assigned regulators, using a t-test comparing
their means. Mathematical details of the Lemon-Tree al-
gorithms can be found in Joshi et al. [16].
The complete workflow used in this study is visualized

in Figure 6.
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